An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation

We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...

متن کامل

An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation

We present an unconditionally energy stable finite difference scheme for the Modified Phase Field Crystal equation, a generalized damped wave equation for which the usual Phase Field Crystal equation is a special degenerate case. The method is based on a convex splitting of a discrete pseudoenergy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the grad...

متن کامل

An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation

We present an unconditionally energy stable finite-difference scheme for the phase field crystal equation. The method is based on a convex splitting of a discrete energy and is semiimplicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step size. We present local-in-time error est...

متن کامل

A fourth-order finite difference scheme for the numerical solution of 1D linear hyperbolic equation

In this paper, a high-order and unconditionally stable difference method is proposed for the numerical solution of onespace dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivative of this equation and a Padé approximation of fifth-order for the resulting system of ordinary differential equations. It is shown ...

متن کامل

A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation

This work extends the previous two-dimensional compact scheme for the Cahn–Hilliard equation (Lee et al., 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in space. The discrete system is conservative and practically stable. We also implement the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2019

ISSN: 0377-0427

DOI: 10.1016/j.cam.2018.05.039